New examples of Willmore tori in $S^{4}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42404010
(http://iopscience.iop.org/1751-8121/42/40/404010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.155
The article was downloaded on 03/06/2010 at 08:12

Please note that terms and conditions apply.

# New examples of Willmore tori in $S^{\mathbf{4}}$ 

A Gouberman ${ }^{1,3}$ and K Leschke ${ }^{2,3}$<br>${ }^{1}$ Institut für Technik Intelligenter Systeme (ITIS e.V.), Universität der Bundeswehr München, Fakultät für Informatik, D-85577 Neubiberg, Germany<br>${ }^{2}$ Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, UK<br>E-mail: alexander.gouberman@unibw.de and k.leschke@mcs.le.ac.uk

Received 31 December 2008, in final form 29 June 2009
Published 16 September 2009
Online at stacks.iop.org/JPhysA/42/404010


#### Abstract

Using the (generalized) Darboux transformation in the case of the Clifford torus, we construct for all Pythagorean triples $(p, q, n) \in \mathbb{Z}^{3}$ a $\mathbb{C P}^{3}$-family of Willmore tori in $S^{4}$ with Willmore energy $2(n \pi)^{2}$.


PACS numbers: $02.40 .-\mathrm{k}, 02.40 . \mathrm{Hw}, 02.30 . \mathrm{Ik}$
(Some figures in this article are in colour only in the electronic version)

## 1. Introduction

Classical geometers such as Bianchi, Darboux and Bäcklund used local transformations to obtain new examples of a particular class of surfaces out of simple known ones by geometric constructions. For instance, the Darboux transformation was classically [6] defined for isothermic surfaces, that is surfaces which allow a conformal curvature line parametrization: two conformal immersions $f$ and $f^{\sharp}$ form a classical Darboux pair if there exists a sphere congruence which envelopes both surfaces $f$ and $f^{\sharp}$. In this case, both $f$ and $f^{\sharp}$ are isothermic.

Relaxing the enveloping condition [3] one obtains a (generalized) Darboux transformation for conformal immersions $f: M \rightarrow S^{4}$ of a Riemann surface into the 4 -sphere. Darboux transforms of a conformal immersion are obtained by prolongations of holomorphic sections in an associated quaternionic holomorphic line bundle. In the case when $f: T^{2} \rightarrow S^{4}$ is a conformal torus with trivial normal bundle, the set of multipliers of holomorphic sections gives rise to a Riemann surface, the (multiplier) spectral curve of $f$. In particular, each point on the spectral curve gives a holomorphic section with the multiplier, and thus there exists at least a Riemann surface worthy of closed Darboux transforms $\hat{f}: T^{2} \rightarrow S^{2}$ from the 2-torus into the 4 -sphere.

In the case when the conformal immersion is given by a harmonicity condition, e.g. for constant mean curvature surfaces, Hamiltonian stationary Lagrangians or (constrained)
${ }^{3}$ Both authors partially supported by DFG SPP 1154 'Global Differential Geometry'.

Willmore surfaces, one obtains an associated family of flat connections $d^{\mu}$ for $\mu \in \mathbb{C}_{*}$. Parallel sections of $d^{\mu}$ give holomorphic sections in the associated quaternionic holomorphic line bundle, and thus give rise to special Darboux transforms-so-called $\mu$-Darboux transforms [ $2,5,10,11]$. In the case of the Clifford torus $f: M \rightarrow S^{3}$ parallel sections of the associated family of flat connections can be computed explicitly, and in this paper we obtain new Willmore tori in $S^{4}$ by constructing $\mu$-Darboux transforms of a covering of the Clifford torus $f$.

## 2. The Darboux transformation

We briefly recall the Darboux transformation on a conformal immersion $f: M \rightarrow S^{4}$ of a Riemann surface into the 4 -sphere [3]. To this end, we consider the 4 -sphere $S^{4}=\mathbb{H}^{1}{ }^{1}$ as the quaternionic projective line and identify $f: M \rightarrow S^{4}$ with the pullback $L=f^{*} \mathcal{T}$ of the tautological line bundle over $\mathbb{H}^{1}$ by $f$, that is $L_{p}=f(p)$. The derivative of $f$ can be identified with the map $\delta=\left.\pi d\right|_{L}$ where $\pi: V \rightarrow V / L$ is the canonical projection of the trivial $\mathbb{H}^{2}$ bundle $V$, and $d$ is the trivial connection on $V$. Moreover, $f$ is a conformal immersion if and only if there exists a complex structure, $S \in \Gamma(\operatorname{End}(V)), S^{2}=-1$, stabilizing $L$ such that

$$
\begin{equation*}
* \delta=S \delta=\delta S \tag{2.1}
\end{equation*}
$$

where $*$ denotes the negative Hodge star operator. Complex structures $S$ on $V$ can be, and will be in the following, identified with sphere congruences [4, proposition 2]. The conformality condition (2.1) means geometrically that the sphere congruence $S$ envelopes $f$, that is, $S$ passes through $f$, and the tangent planes of $f$ and $S$ coincide at corresponding points in an oriented way. In particular, two immersions $f, f^{\sharp}: M \rightarrow S^{4}$ are classical Darboux transforms of each other, if there exists a complex structure $S \in \Gamma(\operatorname{End}(V))$ with $* \delta=S \delta=\delta S$ and $* \delta^{\sharp}=S \delta^{\sharp}=\delta^{\sharp} S$, where $\delta$ and $\delta^{\sharp}$ denote the derivatives of $f$ and $f^{\sharp}$, respectively.

To obtain the Darboux transformation for conformal immersions $f: M \rightarrow S^{4}$, one relaxes the enveloping condition.

Definition 2.1 [3]. Let $f: M \rightarrow S^{4}$ be a conformal immersion. Then a conformal map $\hat{f}: M \rightarrow S^{4}$ is called a Darboux transform of $f$ if $f(p) \neq \hat{f}(p)$ for all $p \in M$ and if there exists a sphere congruence enveloping $f$ and left enveloping $\hat{f}$, that is if there exists a complex structure $S \in \Gamma(\operatorname{End}(V)), S^{2}=-1$, with

$$
* \delta=S \delta=\delta S \quad \text { and } \quad * \hat{\delta}=S \hat{\delta}
$$

We shortly recall the construction of Darboux transforms: since $f$ is a conformal immersion, that is in particular $* \delta=S \delta$, the complex structure $S$ induces a complex structure $J=S_{V / L} \in \Gamma(\operatorname{End}(V / L)), J^{2}=-1$, on the line bundle $V / L$.

Lemma 2.2 [3]. Let $f: M \rightarrow S^{4}$ be a conformal immersion and $J$ be the associated complex structure on $V / L$. Then

$$
D \varphi:=(\pi \mathrm{d} \hat{\varphi})^{\prime \prime}
$$

defines a (quaternionic) holomorphic structure on $V / L$. Here $\hat{\varphi}$ is an arbitrary lift of $\varphi=\pi \hat{\varphi} \in \Gamma(V / L)$, and

$$
\omega^{\prime \prime}=\frac{1}{2}(\omega+J * \omega)
$$

denotes the $(0,1)$ part of a 1-form $\omega \in \Omega^{1}(V / L)$ with respect to the complex structure $J$.

Indeed, $D$ is well defined since $f$ is conformal and thus $(\pi \mathrm{d} \psi)^{\prime \prime}=\delta \psi^{\prime \prime}=0$ for $\psi \in \Gamma(L)$. We denote the set of holomorphic sections by ker $D=H^{0}(V / L)$, and consider holomorphic sections of the pullback $\widetilde{V / L}$ of $V / L$ to the universal cover $\tilde{M}$ of $M$.

Lemma 2.3 (see [3]). Every holomorphic section, $\varphi \in H^{0}(\widetilde{V / L})$, of the canonical holomorphic bundle of a conformal immersion $f: M \rightarrow S^{4}$ has a unique lift $\hat{\varphi} \in \Gamma(\widetilde{V})$ such that

$$
\begin{equation*}
\pi \mathrm{d} \hat{\varphi}=0 \tag{2.2}
\end{equation*}
$$

where $\pi: V \rightarrow V / L$ is the canonical projection. This unique lift $\hat{\varphi}$ is called the prolongation of $\varphi$.

Moreover, if $\varphi$ is nowhere vanishing, then $\hat{f}=\hat{\varphi} \mathbb{H}: \tilde{M} \rightarrow S^{4}$ is a Darboux transform of $f$.

To obtain closed Darboux transforms of $f$, we have to consider holomorphic sections with multiplier, that is, $\varphi \in \operatorname{ker} D \subset \Gamma(\widetilde{V / L})$ with

$$
\gamma^{*} \varphi=\varphi h_{\gamma}, \quad h_{\gamma} \in \mathbb{C}_{*}, \quad \gamma \in \pi_{1}(M)
$$

Note that the prolongation $\hat{\varphi}$ of $\varphi$ has the same multiplier as $\varphi$ so that, if $\varphi$ has no zeros, $\hat{f}=\hat{\varphi} \mathbb{H}: M \rightarrow S^{4}$ defines, indeed, a smooth map from the Riemann surface $M$ into the 4 -sphere. If the holomorphic section $\varphi$ has zeros, the zeros are isolated [8], and the line bundle $\hat{\varphi} \mathbb{H}$ extends continuously into the zero locus of $\varphi$. In this case, $\hat{f}=\hat{\varphi} \mathbb{H}$ is called a singular Darboux transform. In fact, all closed Darboux transforms of a conformal immersion are obtained this way.

Lemma 2.4 [3]. A map $\hat{f}: M \rightarrow S^{4}$ is a (singular) Darboux transform of $f$ if and only if $\hat{f}$ is obtained by the non-constant prolongation of a holomorphic section $\varphi \in H^{0}(\widetilde{V / L})$ with a multiplier.

## 3. $\boldsymbol{\mu}$-Darboux transforms of Willmore surfaces

The conformal Gauss map of a conformal immersion $f: M \rightarrow S^{4}$ is a sphere congruence which envelopes $f$ and has the same mean curvature vector $\mathcal{H}$ as $f$. In terms of the corresponding complex structure $S$, this reads as [4, theorem 2]

$$
\begin{equation*}
* \delta=S \delta=\delta S \quad \text { and } \quad \operatorname{im} A \subset \Omega^{1}(L) \tag{3.1}
\end{equation*}
$$

where the Hopf fields $A$ and $Q$ are defined by the decomposition of the derivative of $S$,

$$
\mathrm{d} S=2(* Q-* A)
$$

into $(1,0)$ and $(0,1)$ parts:

$$
(\mathrm{d} S)^{\prime}=\frac{1}{2}(\mathrm{~d} S-S * \mathrm{~d} S)=-2 * A
$$

and

$$
(\mathrm{d} S)^{\prime \prime}=\frac{1}{2}(\mathrm{~d} S+S * \mathrm{~d} S)=2 * Q
$$

respectively. Since $S^{2}=-1$, the Hopf fields satisfy

$$
\begin{equation*}
* A=S A=-A S \quad \text { and } \quad * Q=-S Q=Q S \tag{3.2}
\end{equation*}
$$

Let now $f: M \rightarrow S^{4}$ be a Willmore surface, i.e., $f$ is an immersion which is a critical point of the Willmore energy, $W(f)=\int_{M}|\mathcal{H}|^{2} \mathrm{~d} A$, under variations with compact support. It
is a well-known fact $[7,12]$ that $f$ is Willmore if and only if the conformal Gauss map of $f$ is harmonic. This can be expressed [4, proposition 5] by the condition

$$
d * A=0 \quad \text { or, equivalently, } \quad d * Q=0
$$

Lemma 3.1 [8, lemma 6.3]. Let $f: M \rightarrow S^{4}$ be a conformal immersion with the conformal Gauss map $S$ and Hopf field A. Then $f$ is Willmore if and only if the family of complex connections

$$
\begin{equation*}
d^{\mu}=d+* A(S(a-1)+b) \tag{3.3}
\end{equation*}
$$

is flat for all $\mu \in \mathbb{C}_{*}$. Here $\mathbb{C}=\operatorname{Span}\{1, I\}$, where $I$ is the complex structure on $V$ given by right multiplication by the imaginary quaternion $i$, and

$$
a=\frac{\mu+\mu^{-1}}{2}, \quad b=I \frac{\mu^{-1}-\mu}{2} .
$$

Proof. Since $d$ is the trivial connection and $[I, S]=0$, the curvature of $d^{\mu}$ is given by

$$
R^{\mu}=(d * A)(S(a-1)+b)
$$

where we used that $Q \wedge A=0$ by type considerations. Therefore, $S$ is harmonic if and only if $d^{\mu}$ is flat.

We consider now parallel sections of $d^{\mu}$ with multiplier that is $d^{\mu} \hat{\varphi}=0$ and $\gamma^{*} \hat{\varphi}=\hat{\varphi} h_{\gamma}$, $h_{\gamma} \in \mathbb{C}_{*}, \gamma \in \pi_{1}(M)$. Denoting the projection of $\hat{\varphi}$ to $V / L$ by $\varphi=\pi \hat{\varphi} \in \Gamma(V / L)$ and recalling (3.1) that $* A(S \hat{\varphi}(a-1)+\hat{\varphi} b) \in \Gamma(L)$, we obtain

$$
\pi \mathrm{d} \hat{\varphi}=0
$$

In particular, $\varphi$ is a holomorphic section with multiplier, and $\hat{\varphi}$ is the prolongation of $\varphi$. Lemma 2.4 now shows that every $d^{\mu}$-parallel section with multiplier gives rise to a (singular) Darboux transform of $f$. Note that $\hat{L}$ is smoothly defined since $\hat{\varphi}$ is nowhere vanishing, and the derivative of $\hat{f}$ is given by (3.3)

$$
\hat{\delta} \hat{\varphi}=-\pi_{\hat{L}} * A(S(a-1)+b) \hat{\varphi}
$$

On the other hand, the holomorphic section, $\varphi=\pi \hat{\varphi}$, may have zeros: this happens exactly for $p \in M$ with $\hat{L}_{p}=L_{p}$. In this case, the derivative of $\hat{f}$ vanishes at $p$ since $A_{p}$ takes values in $L_{p}=\hat{L}_{p}$. In particular, every singular $\mu$-Darboux transform $\hat{f}$ of $f$ is branched.

Definition 3.2. A (singular) Darboux transform $\hat{f}: M \rightarrow S^{4}$ which is given by a parallel section of $d^{\mu}$ is called a $\mu$-Darboux transform of $f$.

Although, in general, the Darboux transforms of a Willmore torus are not necessarily Willmore [1], immersed $\mu$-Darboux transforms are [2].

## 4. The Clifford torus

In this paper, we shall compute all $\mu$-Darboux transforms of the Clifford torus:

$$
f: \mathbb{C} / \Gamma \rightarrow S^{3}, \quad u+\mathrm{i} v \mapsto \frac{1}{\sqrt{2}}\left(\mathrm{e}^{\mathrm{i} u}+j \mathrm{e}^{\mathrm{i} v}\right),
$$

where $\Gamma=2 \pi \mathbb{Z}+2 \pi \mathrm{i} \mathbb{Z}$ is the lattice in $\mathbb{C}$. Note that though $f$ maps into the 3 -sphere, the $\mu$-Darboux transforms will be (branched) conformal immersions into the 4 -sphere. Therefore, we will consider a map $f: M \rightarrow S^{3}$ into the 3-sphere with the inclusions

$$
S^{3} \hookrightarrow \mathbb{R}^{4}=\mathbb{H} \quad \text { and } \quad \mathbb{H} \hookrightarrow \mathbb{H P}^{1}, \quad x \mapsto\binom{x}{1}
$$

as a map into the 4 -sphere. The associated line bundle of $f$ is given by $L=\psi \mathbb{H}$ where

$$
\psi=\binom{f}{1}
$$

The derivative of $L$ is given by

$$
\delta \psi=\pi\binom{\mathrm{d} f}{0}
$$

so that $f$ is conformal if and only if there exists left and right normals $N, R: M \rightarrow S^{2}$ with $* \mathrm{~d} f=N \mathrm{~d} f=-\mathrm{d} f R$. The mean curvature vector $\mathcal{H}$ of a conformal immersion $f$ is given [4, section 7.2] by

$$
\mathcal{H}=-N \bar{H}
$$

where $H$ is defined by $\mathrm{d} f H=(\mathrm{d} N)^{\prime}$. Here' denotes the $(1,0)$ part with respect to the complex structure given by left multiplication by $N$, that is

$$
\omega^{\prime}=\frac{1}{2}(\omega-N * \omega)
$$

In particular, the conformal Gauss map of $f$ is given by $S=G S_{0} G^{-1}$ where

$$
G=\left(\begin{array}{ll}
1 & f  \tag{4.1}\\
0 & 1
\end{array}\right) \quad \text { and } \quad S_{0}=\left(\begin{array}{cc}
N & 0 \\
-H & -R
\end{array}\right)
$$

and the Hopf field $A=G A_{0} G^{-1}$ by

$$
* A_{0}=\frac{1}{4}\left(\begin{array}{cc}
0 & 0 \\
\mathrm{~d} H+H * \mathrm{~d} f H+R * \mathrm{~d} H-H * \mathrm{~d} N & \mathrm{~d} R+R * \mathrm{~d} R
\end{array}\right) .
$$

Let us now turn to the case when $f: \mathbb{C} / \Gamma \rightarrow S^{3}$ is the Clifford torus. Then $f$ is a conformal immersion with left and right normals,

$$
N(u, v)=j \mathrm{e}^{\mathrm{i}(v-u)} \quad \text { and } \quad R(u, v)=j \mathrm{e}^{\mathrm{i}(v+u)}
$$

and mean curvature vector $\mathcal{H}=-N \bar{H}$ where

$$
H=\frac{\sqrt{2}}{2}\left(\mathrm{e}^{-\mathrm{i} u}+j \mathrm{e}^{\mathrm{i} v}\right)
$$

Moreover, $f$ satisfies the following fundamental symmetries:
(i) $R=H f, \quad N=f H$,
(ii) $H$ is conformal with $* \mathrm{~d} H=-R \mathrm{~d} H=\mathrm{d} H N$.

Therefore, the Hopf field, $A=G A_{0} G^{-1}$, is given by

$$
* A_{0}=\frac{1}{4}\left(\begin{array}{cc}
0 & 0 \\
\mathrm{~d} H & 2 \mathrm{~d} H f
\end{array}\right),
$$

where we also used that $R H=H N$; see [4, section 7.2].

## 5. $\mu$-Darboux transforms of the Clifford torus

To compute $\mu$-Darboux transforms of the Clifford torus $f$ we have to find parallel sections $\hat{\varphi} \in \Gamma(V)$ of the family of flat connections $d^{\mu}$ on the trivial $\mathbb{H}^{2}$ bundle $V$. We solve the differential equation, $d^{\mu} \hat{\varphi}=0$, that is with (3.2) we solve

$$
\mathrm{d} \hat{\varphi}=-A \hat{\varphi}(a-1)-* A \hat{\varphi} b
$$

Putting $\phi:=G^{-1} \hat{\varphi}$ we can equivalently find solutions of

$$
\begin{equation*}
\mathrm{d} \phi=-A_{0} \phi(a-1)-* A_{0} \phi b-(\mathrm{d} G) \phi \tag{5.1}
\end{equation*}
$$

where we used that $G^{-1} \mathrm{~d} G=\mathrm{d} G$. Since the connections $d^{\mu}$ are complex, this leads to a system of complex differential equations: writing $\phi=\binom{\alpha}{\beta}$ and decomposing $\alpha=$ $\alpha_{1}+j \alpha_{2}, \beta=\beta_{1}+j \beta_{2}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \Gamma(\mathbb{C})$ with respect to the splitting $\mathbb{H}=\mathbb{C}+j \mathbb{C}$, we consider

$$
\phi=\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\beta_{1} \\
\beta_{2}
\end{array}\right) \in \Gamma\left(\underline{\mathbb{C}}^{4}\right)
$$

as a section of the trivial $\mathbb{C}^{4}$ bundle. After a lengthy but straightforward computation [9] we obtain the system of a linear partial differential equation with non-constant coefficients:

$$
\begin{equation*}
\phi_{u}=U \phi, \quad \phi_{v}=V \phi \tag{5.2}
\end{equation*}
$$

where we denote by ()$_{u}$ and ()$_{v}$ the partial derivatives with respect to $u$ and $v$ respectively, and $U(u, v)$
$=\frac{1}{4 \sqrt{2}}\left(\begin{array}{cccc}0 & 0 & -4 \mathrm{ie}^{\mathrm{i} u} & 0 \\ 0 & 0 & 0 & 4 \mathrm{ie}^{-\mathrm{i} u} \\ \mathrm{i}^{-\mathrm{i} u} b & \mathrm{ie}^{-\mathrm{i} v}(a-1) & \sqrt{2} \mathrm{i}(a-1+b) & \sqrt{2} \mathrm{ie}^{-\mathrm{i}(u+v)}(a-1-b) \\ \mathrm{ie}^{\mathrm{i} v}(a-1) & -\mathrm{ie}^{\mathrm{i} \mathrm{i} u} b & \sqrt{2} \mathrm{ie}^{\mathrm{i}(u+v)}(a-1-b) & -\sqrt{2} \mathrm{i}(a-1+b)\end{array}\right)$
$V(u, v)=\frac{1}{4 \sqrt{2}}$
$\times\left(\begin{array}{cccc}0 & 0 & 0 & -4 \mathrm{ie}^{-\mathrm{i} v} \\ 0 & 0 & -4 \mathrm{ie}^{\mathrm{i} v} & 0 \\ \mathrm{ie}^{-\mathrm{i} u}(a-1) & -\mathrm{ie}^{-\mathrm{i} v} b & \sqrt{2} \mathrm{i}(a-1-b) & -\sqrt{2} \mathrm{i} \mathrm{e}^{-\mathrm{i}(u+v)}(a-1+b) \\ -\mathrm{ie}^{\mathrm{i} v} b & -\mathrm{ie}^{\mathrm{i} u}(a-1) & -\sqrt{2} \mathrm{ie}^{\mathrm{i}(u+v)}(a-1+b) & -\sqrt{2} \mathrm{i}(a-1-b)\end{array}\right)$.
Lemma 5.1. A section $\hat{\varphi} \in \Gamma(V)$ is parallel with respect to $d^{\mu}$ if and only if

$$
\eta:=\mathrm{e}^{D} G^{-1} \hat{\varphi}, \quad D(u, v):=\operatorname{diag}(\mathrm{i} v, \mathrm{i} u, \mathrm{i}(u+v), 0)
$$

solves

$$
\begin{equation*}
\eta_{u}=\tilde{U} \eta, \quad \eta_{v}=\tilde{V} \eta \tag{5.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{U}=\frac{1}{4 \sqrt{2}}\left(\begin{array}{cccc}
0 & 0 & -4 \mathrm{i} & 0 \\
0 & 4 \sqrt{2} \mathrm{i} & 0 & 4 \mathrm{i} \\
\mathrm{i} b & \mathrm{i}(a-1) & \sqrt{2} \mathrm{i}((a-1+b)+4) & \sqrt{2} \mathrm{i}(a-1-b) \\
\mathrm{i}(a-1) & -\mathrm{i} b & \sqrt{2} \mathrm{i}(a-1-b) & -\sqrt{2} \mathrm{i}(a-1+b)
\end{array}\right)  \tag{5.4}\\
& \tilde{V}=\frac{1}{4 \sqrt{2}}\left(\begin{array}{cccc}
4 \sqrt{2} \mathrm{i} & 0 & 0 & -4 \mathrm{i} \\
0 & 0 & -4 \mathrm{i} & 0 \\
\mathrm{i}(a-1) & -\mathrm{i} b & \sqrt{2} \mathrm{i}((a-1-b)+4) & -\sqrt{2} \mathrm{i}(a-1+b) \\
-\mathrm{i} b & -\mathrm{i}(a-1) & -\sqrt{2} \mathrm{i}(a-1+b) & -\sqrt{2} \mathrm{i}(a-1-b)
\end{array}\right) . \tag{5.5}
\end{align*}
$$

are constant. In particular, $\tilde{U}$ and $\tilde{V}$ are commuting matrices.

Proof. The systems of linear differential equations (5.2) and (5.3) are equivalent for

$$
\tilde{U}=\mathrm{e}^{D}\left(D_{u}+U\right) \mathrm{e}^{-D} \quad \text { and } \quad \tilde{V}=\mathrm{e}^{D}\left(D_{v}+V\right) \mathrm{e}^{-D} .
$$

One easily verifies
$\mathrm{e}^{D} U \mathrm{e}^{-D}=\frac{1}{4 \sqrt{2}}\left(\begin{array}{cccc}0 & 0 & -4 \mathrm{i} & 0 \\ 0 & 0 & 0 & 4 \mathrm{i} \\ \mathrm{i} b & \mathrm{i}(a-1) & \sqrt{2} \mathrm{i}(a-1+b) & \sqrt{2} \mathrm{i}(a-1-b) \\ \mathrm{i}(a-1) & -\mathrm{i} b & \sqrt{2} \mathrm{i}(a-1-b) & -\sqrt{2} \mathrm{i}(a-1+b)\end{array}\right)$
so that $\tilde{U}$ is given by (5.4), and a similar computation gives $\tilde{V}$. Finally, since $\tilde{U}$ and $\tilde{V}$ are constant, the compatibility condition, $\eta_{u v}=\eta_{v u}$, shows that $\tilde{U}$ and $\tilde{V}$ are commuting.

Since $\tilde{U}$ and $\tilde{V}$ are simultaneously diagonalizable, all solutions of (5.3) are of the form

$$
\eta(u, v)=C \mathrm{e}^{D_{1} u+D_{2} v} c, \quad c \in \mathbb{C}^{4}
$$

where $C$ is a common basis of eigenvectors of $\tilde{U}$ and $\tilde{V}$, and $D_{1}, D_{2}$ are the corresponding diagonal matrices of eigenvalues.

## Lemma 5.2.

(i) The spectra of $\tilde{U}$ and $\tilde{V}$ coincide, and

$$
\operatorname{spec}(\tilde{U})=\left\{\lambda_{k} \mid k \in \mathbb{Z}_{4}\right\}, \quad \lambda_{k}:=\lambda\left(i^{k} x\right)
$$

Here we put $x:=\mathrm{e}^{\frac{1}{4} \log (\mu)}$, where $\log$ is the main branch of the logarithm, and

$$
\lambda(y)=\frac{(1+\mathrm{i})(y+1)(y+\mathrm{i})}{4 y}
$$

that is

$$
\begin{array}{lr}
\lambda_{0}=\frac{(1+\mathrm{i})(x+1)(x+\mathrm{i})}{4 x}, & \lambda_{1}=-\frac{(1-\mathrm{i})(x+1)(x-\mathrm{i})}{4 x} \\
\lambda_{2}=-\frac{(1+\mathrm{i})(x-1)(x-\mathrm{i})}{4 x}, & \lambda_{3}=\frac{(1-\mathrm{i})(x-1)(x+\mathrm{i})}{4 x} . \tag{5.6}
\end{array}
$$

(ii) Let

$$
w(y)=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \xi(y) \\
\frac{1}{\sqrt{2}} \\
\mathrm{i} \xi(y) \lambda(y) \\
\mathrm{i}(\mathrm{i}-\lambda(y))
\end{array}\right) \quad \text { with } \quad \xi(y):=\mathrm{i} \frac{y-\mathrm{i}}{y+\mathrm{i}}
$$

and define $w_{k}:=w\left(\mathrm{i}^{k} x\right)$ and $\xi_{k}=\xi\left(\mathrm{i}^{k} x\right)$ where again $x=\mathrm{e}^{\frac{1}{4} \log \mu}$.

- For $\mu \neq \pm 1$ the eigenvalues of $\tilde{U}$ (and $\tilde{V}$ ) are pairwise distinct. The eigenspaces of $\tilde{U}$ and $\tilde{V}$ are spanned by

$$
E_{\lambda_{k}}(\tilde{U})=\operatorname{span}\left\{w_{k}\right\} .
$$

- For $\mu=1$, the eigenvalues $\lambda_{0}=\lambda_{1}=\mathrm{i}, \lambda_{2}=\lambda_{3}=0$ coincide, and the complex two-dimensional eigenspaces are given by

$$
\begin{aligned}
& E_{\lambda=i}(\tilde{U})=\lim _{\mu \rightarrow 1} E_{\lambda_{0}}(\tilde{U}) \oplus E_{\lambda_{1}}(\tilde{U}), \\
& E_{\lambda=0}(\tilde{U})=\lim _{\mu \rightarrow 1} E_{\lambda_{2}}(\tilde{U}) \oplus E_{\lambda_{3}}(\tilde{U}) .
\end{aligned}
$$

- For $\mu=-1$, the eigenvalues are $\lambda_{0}=\frac{1+\sqrt{2}}{2} \mathrm{i}, \lambda_{2}=\frac{1-\sqrt{2}}{2}$ and $\lambda_{1}=\lambda_{3}=\frac{1}{2} \mathrm{i}$. The eigenspaces are given by $E_{\lambda_{k}}(\tilde{U})=\operatorname{span}\left\{w_{k}\right\}, k=0,2$, and

$$
E_{\lambda=\frac{1}{2} i}(\tilde{U})=\lim _{\mu \rightarrow-1} E_{\lambda_{1}}(\tilde{U}) \oplus E_{\lambda_{3}}(\tilde{U}),
$$

where the latter is again complex two dimensional.
(iii) Let $\lambda_{k} \in \operatorname{spec}(\tilde{U})$ be an eigenvalue of $\tilde{U}$, and define

$$
\epsilon_{k}:=\xi_{k} \lambda_{k}=\lambda_{k+1}, \quad k \in \mathbb{Z}_{4}
$$

Then $\epsilon_{k}$ is an eigenvalue of $\tilde{V}$, and

$$
E_{\lambda_{k}}(\tilde{U})=E_{\epsilon_{k}}(\tilde{V}) .
$$

We skip the computational proof [9] and remark that the group $\left\langle\zeta_{4}\right\rangle=\langle i\rangle$ acts on the spectrum by

$$
\lambda(\sqrt[4]{\mu}) \mapsto \lambda(\mathrm{i} \sqrt[4]{\mu})
$$

for some fourth root, $\sqrt[4]{\mu}$, of $\mu$. For the subgroup $\left\langle\zeta_{2}\right\rangle=\langle-1\rangle$, the action can be described by

$$
\lambda(-\sqrt[4]{\mu})=\mathrm{i}-\lambda(\sqrt[4]{\mu}) \quad \text { resp. } \quad \lambda_{k+2}=\mathrm{i}-\lambda_{k}, \quad k \in \mathbb{Z}_{4} .
$$

Furthermore, we see that the eigenvalues are multi-valued functions in $\mu \in \mathbb{C}_{*}$ but are well defined on the $4: 1$-covering $\mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ given by $x \mapsto x^{4}=\mu$. The group, $\left\langle\zeta_{4}\right\rangle$, acts as deck transformations of this covering. We summarize

Proposition 5.3. For each $\mu \in \mathbb{C}^{*}$ the fundamental parallel sections $\hat{\varphi}_{k}:=G \phi_{k}, k=$ $0, \ldots, 3$, span the space of $d^{\mu}$-parallel sections where

$$
\begin{equation*}
\phi_{k}:=\mathrm{e}^{-D} C \mathrm{e}^{D_{1} u+D_{2} v} e_{k} . \tag{5.7}
\end{equation*}
$$

Here $e_{k} \in \mathbb{C}^{4}$ is the $(k+1)$ th standard basis vector,

$$
\begin{aligned}
& D=\operatorname{diag}(\mathrm{i} v, \mathrm{i} u, \mathrm{i}(u+v), 0), \\
& D_{1}=\operatorname{diag}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right), \\
& D_{2}=\operatorname{diag}\left(\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)
\end{aligned}
$$

and the columns of $C$ are the corresponding basis of eigenvectors of $\tilde{U}$. In particular, for $\mu \neq 1$ we get

$$
\phi_{k}=\binom{\frac{1}{\sqrt{2}}\left(\xi_{k} \mathrm{e}^{-\mathrm{i} v}+j \mathrm{e}^{-\mathrm{i} u}\right)}{\mathrm{i} \epsilon_{k} \mathrm{e}^{-\mathrm{i}(u+v)}+j \mathrm{i}\left(\mathrm{i}-\lambda_{k}\right)} \mathrm{e}^{\lambda_{k} u+\epsilon_{k} v}
$$

and for $\mu=1$

$$
\phi_{0}=\binom{f}{-1}, \quad \phi_{1}=\frac{1}{\sqrt{2}}\binom{j}{0}, \quad \phi_{2}=\phi_{0} j, \quad \phi_{3}=\phi_{1} \mathrm{i} j
$$

We now obtain all $\mu$-Darboux transforms on the universal cover $\tilde{M}=\mathbb{C}$ of the Clifford torus.

Theorem 5.4. Every $\mu$-Darboux transform $\hat{f}: \mathbb{C} \rightarrow S^{4}$ of the Clifford torus, $\mu \neq 1$, is given by

$$
\hat{f}(u, v)=\frac{1}{\sqrt{2}}\left(g_{1}(u, v) \mathrm{e}^{\mathrm{i} u}+j g_{2}(u, v) \mathrm{e}^{\mathrm{i} v}\right)
$$

where

$$
\begin{aligned}
& g_{1}(u, v)=\frac{\sum_{k, l=0}^{3}\left(-\left(\mathrm{i}-\lambda_{k}\right) \overline{\lambda_{l}}\left(1+\xi_{k} \overline{\xi_{l}}\right)\right) \mathrm{e}^{\left(\lambda_{k}+\overline{\lambda_{l}}\right) u+\left(\epsilon_{k}+\overline{\epsilon_{l}}\right) v} s_{k} \overline{s_{l}}}{\sum_{k, l=0}^{3}\left(\epsilon_{k} \overline{\epsilon_{l}}+\left(\mathrm{i}-\lambda_{k}\right)\left(\overline{\mathrm{i}-\lambda_{l}}\right)\right) \mathrm{e}^{\left(\lambda_{k}+\overline{\lambda_{l}}\right) u+\left(\epsilon_{k}+\overline{\left.\epsilon_{l}\right) v}\right.} s_{k} \overline{s_{l}}} \\
& g_{2}(u, v)=\frac{\sum_{k, l=0}^{3}\left(-\left(\mathrm{i}-\epsilon_{k}\right) \overline{\epsilon_{l}}\left(1+\xi_{k} \overline{\xi_{l}}\right)\right) \mathrm{e}^{\left(\lambda_{k}+\overline{l_{l}}\right) u+\left(\epsilon_{k}+\overline{\left.\epsilon_{l}\right)} v\right.} s_{k} \overline{s_{l}}}{\sum_{k, l=0}^{3}\left(\epsilon_{k} \overline{\epsilon_{l}}+\left(\mathrm{i}-\lambda_{k}\right)\left(\overline{\mathrm{i}-\lambda_{l}}\right)\right) \mathrm{e}^{\left(\lambda_{k}+\overline{\lambda_{l}}\right) u+\left(\epsilon_{k}+\overline{\left.\epsilon_{l}\right) v}\right.} s_{k} \overline{s_{l}}}
\end{aligned}
$$

with $s_{k} \in \mathbb{C}$.
Proof. Let $\mu \neq 1$ and $\phi=\sum_{k=0}^{3} \phi_{k} s_{k}$ be a parallel section of $d^{\mu}$ where $s_{k} \in \mathbb{C}$ and $\phi_{k}$ are the fundamental solutions (5.7). Then $\hat{f}=f+\alpha \beta^{-1}$ is the $\mu$-Darboux transform given by $\phi=\binom{\alpha}{\beta}$, and the claim follows by a straightforward computation.
Remark 5.5. In [2, theorem 2.5] it is shown that all immersed $\mu$-Darboux transforms of a Willmore surface are again Willmore. In particular, the $\mu$-Darboux transforms obtained above are Willmore surfaces in $S^{4}$.

So far, we considered the $\mu$-Darboux transformation on the universal cover $\mathbb{C}$ of the 2-torus $T^{2}=\mathbb{C} / \Gamma$. By lemma 2.4 we have to find parallel sections with multiplier to obtain closed Darboux transforms on the torus $T^{2}$. Since $\hat{\varphi}=G^{-1} \phi$, and $G$ is defined (4.1) on $T^{2}=\mathbb{C} / \Gamma$, it is enough to find solutions $\phi$ of (5.2) with multiplier.

Theorem 5.6. Let $f: \mathbb{C} / \Gamma \rightarrow S^{3}$ be the Clifford torus.
(i) A fundamental solution $\phi_{k}$ is a parallel section of $d^{\mu}$ with multiplier, and the $\mu$-Darboux transform given by $\phi_{k}, \mu \neq 1$, is obtained by rotating and scaling $f$. For $\mu=1$, all $\mu$-Darboux transforms are constant.
(ii) Let $\mu \neq 1$ and $\hat{f}: \mathbb{C} / \Gamma \rightarrow S^{4}$ be a closed $\mu$-Darboux transform of $f$. Then there exists a fundamental solution $\hat{\varphi}_{k}=G \phi_{k}$ with

$$
\hat{f}=\hat{\varphi}_{k} \mathbb{H}
$$

In particular, every non-constant $\mu$-Darboux transform $\hat{f}: \mathbb{C} / \Gamma \rightarrow S^{4}$ of $f$ is the Clifford torus.

## Proof.

(i) If

$$
\phi_{k}=\binom{\frac{1}{\sqrt{2}}\left(\xi_{k} \mathrm{e}^{-\mathrm{i} v}+j \mathrm{e}^{-\mathrm{i} u}\right)}{\mathrm{i} \epsilon_{k} \mathrm{e}^{-\mathrm{i}(u+v)}+j \mathrm{i}\left(\mathrm{i}-\lambda_{k}\right)} \mathrm{e}^{\lambda_{k} u+\epsilon_{k} v}
$$

is a fundamental solution, then the corresponding $\mu$-Darboux transform is

$$
\hat{f}=\frac{1}{\sqrt{2}}\left(r_{1} \mathrm{e}^{\mathrm{i} u}+r_{2} \mathrm{e}^{\mathrm{i} v}\right)
$$

where

$$
\begin{aligned}
& r_{1}=\frac{\left|\epsilon_{k}\right|^{2}+\left|\mathrm{i}-\lambda_{k}\right|^{2}-\mathrm{i} \xi_{k} \overline{\epsilon_{k}}+\mathrm{i}\left(\mathrm{i}-\lambda_{k}\right)}{\left|\epsilon_{k}\right|^{2}+\left|\mathrm{i}-\lambda_{k}\right|^{2}}, \\
& r_{2}=\frac{\left|\epsilon_{k}\right|^{2}+\left|\mathrm{i}-\lambda_{k}\right|^{2}-\mathrm{i} \overline{\epsilon_{k}}-\overline{\xi_{k}} \mathrm{i}\left(\mathrm{i}-\lambda_{k}\right)}{\left|\epsilon_{k}\right|^{2}+\left|\mathrm{i}-\lambda_{k}\right|^{2}} .
\end{aligned}
$$

One easily verifies with $\epsilon_{k}=\xi_{k} \lambda_{k}$ and $\mathrm{i}-\lambda_{k}=-\xi_{k}\left(\mathrm{i}-\epsilon_{k}\right)$ that

$$
\frac{r_{1}}{r_{2}}=-\frac{\xi_{k}}{\bar{\xi}_{k}} \in S^{1}
$$

so that $r_{2}=r_{1} \mathrm{e}^{\mathrm{i} \theta}$ for $\mathrm{a} \theta \in \mathbb{R}$ and $\hat{f}(u, v)=f(u, v+\theta) r_{1}$.

Proposition 5.3 implies that $\hat{\varphi}_{k}=G \phi_{k}$ is constant for $\mu=1$, and thus an arbitrary solution, $\phi=\sum_{k} \phi_{k} s_{k}$, gives a constant Darboux transform $\hat{f}=G \phi \mathbb{H}=$ const.
(ii) Let $\hat{f}$ be given by the section $\phi=G^{-1} \hat{\varphi}$ and suppose that $\phi$ is not a fundamental solution, i.e. $\phi=\sum_{k} \phi_{k} s_{k}$ and $s_{k}, s_{l} \neq 0$ for some $k \neq l$. The monodromy condition implies that

$$
\phi(u+2 \pi, v)=\phi(u, v) h_{1} \quad \text { and } \quad \phi(u, v+2 \pi)=\phi(u, v) h_{2},
$$

with $h_{1}, h_{2} \in \mathbb{C}$. Since the fundamental solutions

$$
\phi_{k}=\binom{\frac{1}{\sqrt{2}}\left(\xi_{k} \mathrm{e}^{-\mathrm{i} v}+j \mathrm{e}^{-\mathrm{i} u}\right)}{\mathrm{i} \epsilon_{k} \mathrm{e}^{-\mathrm{i}(u+v)}+j \mathrm{i}\left(\mathrm{i}-\lambda_{k}\right)} \mathrm{e}^{\lambda_{k} u+\epsilon_{k} v}
$$

are linearly independent over $\mathbb{C}$, it follows that

$$
h_{1}=\mathrm{e}^{2 \pi \lambda_{k}}=\mathrm{e}^{2 \pi \lambda_{l}} \quad \text { and } \quad h_{2}=\mathrm{e}^{2 \pi \epsilon_{k}}=\mathrm{e}^{2 \pi \epsilon_{l}},
$$

that is

$$
\begin{equation*}
\lambda_{k}-\lambda_{l} \in \mathrm{i} \mathbb{Z} \quad \text { and } \quad \epsilon_{k}-\epsilon_{l}=\lambda_{k+1}-\lambda_{l+1} \in \mathrm{i} \mathbb{Z} \tag{5.8}
\end{equation*}
$$

From (5.6) we see that

$$
\begin{equation*}
\lambda_{0}-\lambda_{1}=\frac{x^{2}-1}{2 x}, \quad \lambda_{0}-\lambda_{3}=\frac{\mathrm{i}\left(x^{2}+1\right)}{2 x} \tag{5.9}
\end{equation*}
$$

and the remaining differences $\lambda_{k}-\lambda_{l}$ can be computed by using $\Sigma_{k=0}^{3}(-1)^{k} \lambda_{k}=0$. Then it is easy to show that (5.8) is satisfied only if $x \in\{ \pm 1, \pm \mathrm{i}\}$ which contradicts $\mu=x^{4} \neq 1$.

## 6. New Willmore tori in $S^{4}$

As we have seen in theorem 5.6, the only $\mu$-Darboux transforms of the Clifford torus on $\mathbb{C} / \Gamma$ are obtained by fundamental solutions $\hat{\varphi}_{k}$, and in this case the $\mu$-Darboux transform is the reparametrized and scaled Clifford torus $f$. To obtain new examples, we consider an $n^{2}$-fold covering, $f: \mathbb{C} / \Gamma_{n} \rightarrow S^{3}, u+\mathrm{i} v \mapsto \frac{1}{\sqrt{2}}\left(\mathrm{e}^{\mathrm{i} u}+j \mathrm{e}^{\mathrm{i} v}\right)$, of the Clifford torus with lattice $\Gamma_{n}=2 \pi n \mathbb{Z}+2 \pi n i \mathbb{Z}$, and contemplate the $\mu$-Darboux transforms of $f$.

Lemma 6.1. Let $f: \mathbb{C} / \Gamma_{n} \rightarrow S^{3}$ be the $n^{2}$-fold covering of the Clifford torus. Then the following statements are equivalent:
(i) For $\mu \in \mathbb{C}_{*}$ all $\mu$-Darboux transforms are defined on $\mathbb{C} / \Gamma_{n}$.
(ii) $\mu=x^{4}$ with $x=\frac{p+i q}{n} \in S^{1}$ and $(p, q) \in \mathbb{Z}^{2} \backslash\{0\}$.

In this case, the multiplier $h: \Gamma_{n} \rightarrow \mathbb{C}^{*}$ is trivial, i.e. $h \equiv 1$.
Proof. Let $\phi=\sum_{k} \phi_{k} s_{k}$ be a parallel section of $d^{\mu}, \mu=x^{4}$, with $s_{k} \neq 0$ for all $k$, where $\phi_{k}$ are the fundamental solutions (5.7). Then

$$
\phi(u+2 \pi n, v)=\phi(u, v) \Longleftrightarrow h=\mathrm{e}^{2 \pi n \lambda_{k}} \quad \text { for all } \quad k=0,1,2,3
$$

This implies that $n\left(\lambda_{k}-\lambda_{l}\right) \in \mathrm{i} \mathbb{Z}$ for all $k, l$, and as in the proof of theorem 5.6 it is enough to consider
$n\left(\lambda_{0}-\lambda_{1}\right)=\frac{n\left(x^{2}-1\right)}{2 x}=\mathrm{i} p \quad$ and $\quad n\left(\lambda_{0}-\lambda_{3}\right)=\frac{\mathrm{i} n\left(x^{2}+1\right)}{2 x}=\mathrm{i} q$
for some $p, q \in \mathbb{Z}$. Using (5.9) we see that these equations can be satisfied if and only if $p^{2}+q^{2}=n^{2}$, that is $x=\frac{p+\mathrm{i} q}{n} \in S^{1}$. In this case

$$
\lambda_{k}=\frac{\mathrm{i}( \pm p \pm q+n)}{2 n} \quad \text { for all } k
$$



Figure 1. Willmore cylinder obtained by the $\mu$-Darboux transformation.


Figure 2. $\mu$-Darboux transform with $(p, q, n)=(3,4,5)$.


Figure 3. $\mu$-Darboux transform with $(p, q, n)=(3,4,5)$.


Figure 4. $\mu$-Darboux transform with $(p, q, n)=(5,12,13)$.

For an arbitrary Pythagorean triple ( $p, q, n$ ), it is known that $p \pm q$ and $n$ are both odd, so that $\pm p \pm q+n$ is even and $h=\mathrm{e}^{2 \pi n \lambda_{k}}=1$. Since $\epsilon_{k}=\lambda_{k+1}$ we also see that the $v$-periods close.

Since the Darboux transformation essentially preserves the geometric genus of the spectral curve and the Willmore energy [3] we have shown.

Theorem 6.2. For all Pythagorian triple $(p, q, n)$, there exists a $\mathbb{C P}^{3}$ family of $\mu$-Darboux transforms $\hat{f}: \mathbb{C}^{2} / \Gamma_{n} \rightarrow S^{4}$ for $\mu=\frac{p+\mathrm{i} q}{n}$. If $\hat{f}$ is immersed, then $\hat{f}$ is a Willmore torus with Willmore energy $W(\hat{f})=2(\pi n)^{2}$. Moreover, in this case $\hat{f}$ has spectral genus zero.

## References

[1] Bernstein H 2001 Non-special, non-canal isothermic tori with spherical lines of curvature Trans. Am. Math. Soc. 353 2245-74
[2] Bohle C 2008 Constrained Willmore tori in the 4-sphere arXiv:math.DG/0803.0633
[3] Bohle C, Leschke K, Pedit F and Pinkall U Conformal maps from a 2-torus to the 4-sphere arXiv:0712.2311
[4] Burstall F, Ferus D, Leschke K, Pedit F and Pinkall U 2002 Conformal Geometry of Surfaces in S ${ }^{4}$ and Quaternions (Lecture Notes in Mathematics) (Berlin: Springer)
[5] Carberry E, Leschke K and Pedit F Darboux transforms and spectral curves of constant mean curvature surfaces revisited in preparation
[6] Darboux G 1899 Sur les surfaces isothermiques C. R. Acad. Sci., Paris 128 1299-305
[7] Ejiri N 1988 Willmore surfaces with a duality in $S^{n}(1)$ Proc. Lond. Math. Soc. III Ser. 57 383-416
[8] Ferus D, Leschke K, Pedit F and Pinkall U 2001 Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori Invent. Math. 146 507-93
[9] Gouberman A 2008 Darboux-transformationen des Clifford-torus Diplomarbeit Universität Augsburg
[10] Leschke K 2006 Transformation on Willmore surfaces Habilitationsschrift Universität Augsburg
[11] Leschke K and Romon P Darboux transforms and spectral curve of Hamiltonian stationary tori arXiv:0806.1848
[12] Rigoli M 1987 The conformal Gauss map of submanifolds of the Moebius space Ann. Glob. Anal. Geom. 5 97-116

