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Abstract
Using the (generalized) Darboux transformation in the case of the Clifford
torus, we construct for all Pythagorean triples (p, q, n) ∈ Z

3 a CP
3-family of

Willmore tori in S4 with Willmore energy 2(nπ)2.

PACS numbers: 02.40.−k, 02.40.Hw, 02.30.Ik

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Classical geometers such as Bianchi, Darboux and Bäcklund used local transformations to
obtain new examples of a particular class of surfaces out of simple known ones by geometric
constructions. For instance, the Darboux transformation was classically [6] defined for
isothermic surfaces, that is surfaces which allow a conformal curvature line parametrization:
two conformal immersions f and f � form a classical Darboux pair if there exists a sphere
congruence which envelopes both surfaces f and f �. In this case, both f and f � are isothermic.

Relaxing the enveloping condition [3] one obtains a (generalized) Darboux transformation
for conformal immersions f : M → S4 of a Riemann surface into the 4-sphere. Darboux
transforms of a conformal immersion are obtained by prolongations of holomorphic sections
in an associated quaternionic holomorphic line bundle. In the case when f : T 2 → S4 is
a conformal torus with trivial normal bundle, the set of multipliers of holomorphic sections
gives rise to a Riemann surface, the (multiplier) spectral curve of f . In particular, each point
on the spectral curve gives a holomorphic section with the multiplier, and thus there exists at
least a Riemann surface worthy of closed Darboux transforms f̂ : T 2 → S2 from the 2-torus
into the 4-sphere.

In the case when the conformal immersion is given by a harmonicity condition, e.g.
for constant mean curvature surfaces, Hamiltonian stationary Lagrangians or (constrained)
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Willmore surfaces, one obtains an associated family of flat connections dμ for μ ∈ C∗.
Parallel sections of dμ give holomorphic sections in the associated quaternionic holomorphic
line bundle, and thus give rise to special Darboux transforms—so-called μ-Darboux transforms
[2 ,5, 10, 11]. In the case of the Clifford torus f : M → S3 parallel sections of the associated
family of flat connections can be computed explicitly, and in this paper we obtain new Willmore
tori in S4 by constructing μ-Darboux transforms of a covering of the Clifford torus f .

2. The Darboux transformation

We briefly recall the Darboux transformation on a conformal immersion f : M → S4 of a
Riemann surface into the 4-sphere [3]. To this end, we consider the 4-sphere S4 = HP

1 as
the quaternionic projective line and identify f : M → S4 with the pullback L = f ∗T of
the tautological line bundle over HP

1 by f , that is Lp = f (p). The derivative of f can be
identified with the map δ = πd|L where π : V → V/L is the canonical projection of the
trivial H

2 bundle V, and d is the trivial connection on V. Moreover, f is a conformal immersion
if and only if there exists a complex structure, S ∈ �(End(V )), S2 = −1, stabilizing L such
that

∗δ = Sδ = δS , (2.1)

where ∗ denotes the negative Hodge star operator. Complex structures S on V can be, and will
be in the following, identified with sphere congruences [4, proposition 2]. The conformality
condition (2.1) means geometrically that the sphere congruence S envelopes f , that is, S
passes through f, and the tangent planes of f and S coincide at corresponding points in an
oriented way. In particular, two immersions f, f � : M → S4 are classical Darboux transforms
of each other, if there exists a complex structure S ∈ �(End(V )) with ∗δ = Sδ = δS and
∗δ� = Sδ� = δ�S, where δ and δ� denote the derivatives of f and f �, respectively.

To obtain the Darboux transformation for conformal immersions f : M → S4, one
relaxes the enveloping condition.

Definition 2.1 [3]. Let f : M → S4 be a conformal immersion. Then a conformal map
f̂ : M → S4 is called a Darboux transform of f if f (p) �= f̂ (p) for all p ∈ M and if there
exists a sphere congruence enveloping f and left enveloping f̂ , that is if there exists a complex
structure S ∈ �(End(V )), S2 = −1, with

∗δ = Sδ = δS and ∗ δ̂ = Sδ̂.

We shortly recall the construction of Darboux transforms: since f is a conformal
immersion, that is in particular ∗δ = Sδ, the complex structure S induces a complex structure
J = SV/L ∈ �(End(V/L)), J 2 = −1, on the line bundle V/L.

Lemma 2.2 [3]. Let f : M → S4 be a conformal immersion and J be the associated complex
structure on V/L. Then

Dϕ := (πdϕ̂)′′

defines a (quaternionic) holomorphic structure on V/L. Here ϕ̂ is an arbitrary lift of
ϕ = πϕ̂ ∈ �(V/L), and

ω′′ = 1
2 (ω + J ∗ ω)

denotes the (0, 1) part of a 1-form ω ∈ �1(V/L) with respect to the complex structure J.

2
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Indeed, D is well defined since f is conformal and thus (π dψ)′′ = δψ ′′ = 0 for
ψ ∈ �(L). We denote the set of holomorphic sections by ker D = H 0(V/L), and consider
holomorphic sections of the pullback Ṽ /L of V/L to the universal cover M̃ of M.

Lemma 2.3 (see [3]). Every holomorphic section, ϕ ∈ H 0(Ṽ /L), of the canonical
holomorphic bundle of a conformal immersion f : M → S4 has a unique lift ϕ̂ ∈ �(Ṽ )

such that

π dϕ̂ = 0 , (2.2)

where π : V → V/L is the canonical projection. This unique lift ϕ̂ is called the prolongation
of ϕ.

Moreover, if ϕ is nowhere vanishing, then f̂ = ϕ̂H : M̃ → S4 is a Darboux transform
of f .

To obtain closed Darboux transforms of f , we have to consider holomorphic sections
with multiplier, that is, ϕ ∈ ker D ⊂ �(Ṽ /L) with

γ ∗ϕ = ϕhγ , hγ ∈ C∗, γ ∈ π1(M).

Note that the prolongation ϕ̂ of ϕ has the same multiplier as ϕ so that, if ϕ has no zeros,
f̂ = ϕ̂H : M → S4 defines, indeed, a smooth map from the Riemann surface M into the
4-sphere. If the holomorphic section ϕ has zeros, the zeros are isolated [8], and the line bundle
ϕ̂H extends continuously into the zero locus of ϕ. In this case, f̂ = ϕ̂H is called a singular
Darboux transform. In fact, all closed Darboux transforms of a conformal immersion are
obtained this way.

Lemma 2.4 [3]. A map f̂ : M → S4 is a (singular) Darboux transform of f if and only if f̂

is obtained by the non-constant prolongation of a holomorphic section ϕ ∈ H 0(Ṽ /L) with a
multiplier.

3. μ-Darboux transforms of Willmore surfaces

The conformal Gauss map of a conformal immersion f : M → S4 is a sphere congruence
which envelopes f and has the same mean curvature vector H as f . In terms of the
corresponding complex structure S, this reads as [4, theorem 2]

∗δ = Sδ = δS and im A ⊂ �1(L) , (3.1)

where the Hopf fields A and Q are defined by the decomposition of the derivative of S,

dS = 2(∗Q − ∗A),

into (1, 0) and (0, 1) parts:

(dS)′ = 1
2 (dS − S ∗ dS) = −2 ∗ A

and

(dS)′′ = 1
2 (dS + S ∗ dS) = 2 ∗ Q,

respectively. Since S2 = −1, the Hopf fields satisfy

∗A = SA = −AS and ∗Q = −SQ = QS. (3.2)

Let now f : M → S4 be a Willmore surface, i.e., f is an immersion which is a critical
point of the Willmore energy, W(f ) = ∫

M
|H|2 dA, under variations with compact support. It

3
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is a well-known fact [7, 12] that f is Willmore if and only if the conformal Gauss map of f

is harmonic. This can be expressed [4, proposition 5] by the condition

d ∗ A = 0 or, equivalently, d ∗ Q = 0.

Lemma 3.1 [8, lemma 6.3]. Let f : M → S4 be a conformal immersion with the conformal
Gauss map S and Hopf field A. Then f is Willmore if and only if the family of complex
connections

dμ = d + ∗A(S(a − 1) + b) (3.3)

is flat for all μ ∈ C∗. Here C = Span{1, I }, where I is the complex structure on V given by
right multiplication by the imaginary quaternion i, and

a = μ + μ−1

2
, b = I

μ−1 − μ

2
.

Proof. Since d is the trivial connection and [I, S] = 0, the curvature of dμ is given by

Rμ = (d ∗ A)(S(a − 1) + b),

where we used that Q ∧ A = 0 by type considerations. Therefore, S is harmonic if and only
if dμ is flat. �

We consider now parallel sections of dμ with multiplier that is dμϕ̂ = 0 and γ ∗ϕ̂ = ϕ̂hγ ,
hγ ∈ C∗, γ ∈ π1(M). Denoting the projection of ϕ̂ to V/L by ϕ = πϕ̂ ∈ �(V/L) and
recalling (3.1) that ∗A(Sϕ̂(a − 1) + ϕ̂b) ∈ �(L), we obtain

π dϕ̂ = 0.

In particular, ϕ is a holomorphic section with multiplier, and ϕ̂ is the prolongation of ϕ.
Lemma 2.4 now shows that every dμ-parallel section with multiplier gives rise to a (singular)
Darboux transform of f . Note that L̂ is smoothly defined since ϕ̂ is nowhere vanishing, and
the derivative of f̂ is given by (3.3)

δ̂ϕ̂ = −πL̂ ∗ A(S(a − 1) + b)ϕ̂.

On the other hand, the holomorphic section, ϕ = πϕ̂, may have zeros: this happens exactly
for p ∈ M with L̂p = Lp. In this case, the derivative of f̂ vanishes at p since Ap takes values
in Lp = L̂p. In particular, every singular μ-Darboux transform f̂ of f is branched.

Definition 3.2. A (singular) Darboux transform f̂ : M → S4 which is given by a parallel
section of dμ is called a μ-Darboux transform of f .

Although, in general, the Darboux transforms of a Willmore torus are not necessarily
Willmore [1], immersed μ-Darboux transforms are [2].

4. The Clifford torus

In this paper, we shall compute all μ-Darboux transforms of the Clifford torus:

f : C/� → S3, u + iv 	→ 1√
2
(eiu + j eiv),

where � = 2πZ + 2π iZ is the lattice in C. Note that though f maps into the 3-sphere, the
μ-Darboux transforms will be (branched) conformal immersions into the 4-sphere. Therefore,
we will consider a map f : M → S3 into the 3-sphere with the inclusions

S3 ↪→ R
4 = H and H ↪→ HP

1, x 	→
(

x

1

)
4
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as a map into the 4-sphere. The associated line bundle of f is given by L = ψH where

ψ =
(

f

1

)
.

The derivative of L is given by

δψ = π

(
df

0

)
,

so that f is conformal if and only if there exists left and right normals N,R : M → S2 with
∗df = N df = −df R. The mean curvature vector H of a conformal immersion f is given
[4, section 7.2] by

H = −NH̄,

where H is defined by df H = (dN)′. Here ′ denotes the (1, 0) part with respect to the complex
structure given by left multiplication by N, that is

ω′ = 1
2 (ω − N ∗ ω).

In particular, the conformal Gauss map of f is given by S = GS0G
−1 where

G =
(

1 f

0 1

)
and S0 =

(
N 0

−H −R

)
, (4.1)

and the Hopf field A = GA0G
−1 by

∗A0 = 1

4

(
0 0

dH + H ∗ df H + R ∗ dH − H ∗ dN dR + R ∗ dR

)
.

Let us now turn to the case when f : C/� → S3 is the Clifford torus. Then f is a
conformal immersion with left and right normals,

N(u, v) = j ei(v−u) and R(u, v) = j ei(v+u),

and mean curvature vector H = −NH̄ where

H =
√

2

2
(e−iu + j eiv).

Moreover, f satisfies the following fundamental symmetries:

(i) R = Hf, N = f H,

(ii) H is conformal with ∗dH = −R dH = dHN.

Therefore, the Hopf field, A = GA0G
−1, is given by

∗A0 = 1

4

(
0 0

dH 2 dHf

)
,

where we also used that RH = HN ; see [4, section 7.2].

5. μ-Darboux transforms of the Clifford torus

To compute μ-Darboux transforms of the Clifford torus f we have to find parallel sections
ϕ̂ ∈ �(V ) of the family of flat connections dμ on the trivial H

2 bundle V. We solve the
differential equation, dμϕ̂ = 0, that is with (3.2) we solve

dϕ̂ = −Aϕ̂(a − 1) − ∗Aϕ̂b.

5
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Putting φ := G−1ϕ̂ we can equivalently find solutions of

dφ = −A0φ(a − 1) − ∗A0φb − (dG)φ , (5.1)

where we used that G−1 dG = dG. Since the connections dμ are complex, this leads
to a system of complex differential equations: writing φ = (

α

β

)
and decomposing α =

α1 + jα2, β = β1 + jβ2, α1, α2, β1, β2 ∈ �(C) with respect to the splitting H = C + jC, we
consider

φ =

⎛⎜⎜⎝
α1

α2

β1

β2

⎞⎟⎟⎠ ∈ �(C4)

as a section of the trivial C
4 bundle. After a lengthy but straightforward computation [9] we

obtain the system of a linear partial differential equation with non-constant coefficients:

φu = Uφ, φv = V φ, (5.2)

where we denote by ()u and ()v the partial derivatives with respect to u and v respectively, and

U(u, v)

= 1

4
√

2

⎛⎜⎜⎜⎜⎝
0 0 −4 ieiu 0

0 0 0 4 ie−iu

ie−iub ie−iv(a − 1)
√

2i(a − 1 + b)
√

2 ie−i(u+v)(a − 1 − b)

ieiv(a − 1) − ieiub
√

2 iei(u+v)(a − 1 − b) −√
2i(a − 1 + b)

⎞⎟⎟⎟⎟⎠
V (u, v) = 1

4
√

2

×

⎛⎜⎜⎜⎜⎝
0 0 0 −4 ie−iv

0 0 −4 ieiv 0

ie−iu(a − 1) − ie−ivb
√

2i(a − 1 − b) −√
2i e−i(u+v)(a − 1 + b)

− ieivb − ieiu(a − 1) −√
2 iei(u+v)(a − 1 + b) −√

2i(a − 1 − b)

⎞⎟⎟⎟⎟⎠ .

Lemma 5.1. A section ϕ̂ ∈ �(V ) is parallel with respect to dμ if and only if

η := eDG−1ϕ̂, D(u, v) := diag(iv, iu, i(u + v), 0),

solves

ηu = Ũη, ηv = Ṽ η, (5.3)

where

Ũ = 1

4
√

2

⎛⎜⎜⎜⎜⎝
0 0 −4i 0

0 4
√

2i 0 4i

ib i(a − 1)
√

2i((a − 1 + b) + 4)
√

2i(a − 1 − b)

i(a − 1) −ib
√

2i(a − 1 − b) −√
2i(a − 1 + b)

⎞⎟⎟⎟⎟⎠ (5.4)

Ṽ = 1

4
√

2

⎛⎜⎜⎜⎜⎝
4
√

2i 0 0 −4i

0 0 −4i 0

i(a − 1) −ib
√

2i((a − 1 − b) + 4) −√
2i(a − 1 + b)

−ib −i(a − 1) −√
2i(a − 1 + b) −√

2i(a − 1 − b)

⎞⎟⎟⎟⎟⎠ . (5.5)

are constant. In particular, Ũ and Ṽ are commuting matrices.

6
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Proof. The systems of linear differential equations (5.2) and (5.3) are equivalent for

Ũ = eD(Du + U) e−D and Ṽ = eD(Dv + V ) e−D.

One easily verifies

eDU e−D = 1

4
√

2

⎛⎜⎜⎜⎜⎝
0 0 −4i 0

0 0 0 4i

ib i(a − 1)
√

2i(a − 1 + b)
√

2i(a − 1 − b)

i(a − 1) −ib
√

2i(a − 1 − b) −√
2i(a − 1 + b)

⎞⎟⎟⎟⎟⎠
so that Ũ is given by (5.4), and a similar computation gives Ṽ . Finally, since Ũ and Ṽ are
constant, the compatibility condition, ηuv = ηvu, shows that Ũ and Ṽ are commuting. �

Since Ũ and Ṽ are simultaneously diagonalizable, all solutions of (5.3) are of the form

η(u, v) = C eD1u+D2vc, c ∈ C
4,

where C is a common basis of eigenvectors of Ũ and Ṽ , and D1,D2 are the corresponding
diagonal matrices of eigenvalues.

Lemma 5.2.

(i) The spectra of Ũ and Ṽ coincide, and

spec(Ũ) = {λk|k ∈ Z4}, λk := λ(ikx).

Here we put x := e
1
4 log(μ), where log is the main branch of the logarithm, and

λ(y) = (1 + i)(y + 1)(y + i)

4y

that is

λ0 = (1 + i)(x + 1)(x + i)

4x
, λ1 = − (1 − i)(x + 1)(x − i)

4x
,

λ2 = − (1 + i)(x − 1)(x − i)

4x
, λ3 = (1 − i)(x − 1)(x + i)

4x
.

(5.6)

(ii) Let

w(y) =

⎛⎜⎜⎜⎜⎝
1√
2
ξ(y)

1√
2

iξ(y)λ(y)

i(i − λ(y))

⎞⎟⎟⎟⎟⎠ with ξ(y) := i
y − i

y + i
,

and define wk := w(ikx) and ξk = ξ(ikx) where again x = e
1
4 log μ.

• For μ �= ±1 the eigenvalues of Ũ (and Ṽ ) are pairwise distinct. The eigenspaces of
Ũ and Ṽ are spanned by

Eλk
(Ũ) = span{wk}.

• For μ = 1, the eigenvalues λ0 = λ1 = i, λ2 = λ3 = 0 coincide, and the complex
two-dimensional eigenspaces are given by

Eλ=i (Ũ ) = lim
μ→1

Eλ0(Ũ) ⊕ Eλ1(Ũ),

Eλ=0(Ũ) = lim
μ→1

Eλ2(Ũ) ⊕ Eλ3(Ũ).

7
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• For μ = −1, the eigenvalues are λ0 = 1+
√

2
2 i, λ2 = 1−√

2
2 and λ1 = λ3 = 1

2 i. The
eigenspaces are given by Eλk

(Ũ) = span{wk}, k = 0, 2, and

Eλ= 1
2 i(Ũ) = lim

μ→−1
Eλ1(Ũ) ⊕ Eλ3(Ũ),

where the latter is again complex two dimensional.

(iii) Let λk ∈ spec(Ũ) be an eigenvalue of Ũ , and define

εk := ξkλk = λk+1, k ∈ Z4.

Then εk is an eigenvalue of Ṽ , and

Eλk
(Ũ) = Eεk

(Ṽ ).

We skip the computational proof [9] and remark that the group 〈ζ4〉 = 〈i〉 acts on the
spectrum by

λ( 4
√

μ) 	→ λ(i 4
√

μ)

for some fourth root, 4
√

μ, of μ. For the subgroup 〈ζ2〉 = 〈−1〉, the action can be described by

λ(− 4
√

μ) = i − λ( 4
√

μ) resp. λk+2 = i − λk, k ∈ Z4.

Furthermore, we see that the eigenvalues are multi-valued functions in μ ∈ C∗ but are well
defined on the 4 : 1-covering C

∗ → C
∗ given by x 	→ x4 = μ. The group, 〈ζ4〉, acts as deck

transformations of this covering. We summarize

Proposition 5.3. For each μ ∈ C
∗ the fundamental parallel sections ϕ̂k := Gφk, k =

0, . . . , 3, span the space of dμ-parallel sections where

φk := e−DC eD1u+D2vek. (5.7)

Here ek ∈ C
4 is the (k + 1)th standard basis vector,

D = diag(iv, iu, i(u + v), 0),

D1 = diag(λ0, λ1, λ2, λ3),

D2 = diag(ε0, ε1, ε2, ε3),

and the columns of C are the corresponding basis of eigenvectors of Ũ . In particular, for
μ �= 1 we get

φk =
(

1√
2
(ξk e−iv + j e−iu)

iεk e−i(u+v) + j i(i − λk)

)
eλku+εkv

and for μ = 1

φ0 =
(

f

−1

)
, φ1 = 1√

2

(
j

0

)
, φ2 = φ0j, φ3 = φ1ij.

We now obtain all μ-Darboux transforms on the universal cover M̃ = C of the Clifford
torus.

Theorem 5.4. Every μ-Darboux transform f̂ : C → S4 of the Clifford torus, μ �= 1, is given
by

f̂ (u, v) = 1√
2
(g1(u, v) eiu + jg2(u, v) eiv),

8
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where

g1(u, v) =
∑3

k,l=0(−(i − λk)λl(1 + ξkξl)) e(λk+λl)u+(εk+εl )vsksl∑3
k,l=0(εkεl + (i − λk)(i − λl)) e(λk+λl)u+(εk+εl )vsksl

g2(u, v) =
∑3

k,l=0(−(i − εk)εl(1 + ξkξl)) e(λk+λl)u+(εk+εl )vsksl∑3
k,l=0(εkεl + (i − λk)(i − λl)) e(λk+λl)u+(εk+εl )vsksl

with sk ∈ C.

Proof. Let μ �= 1 and φ = ∑3
k=0 φksk be a parallel section of dμ where sk ∈ C and φk are

the fundamental solutions (5.7). Then f̂ = f + αβ−1 is the μ-Darboux transform given by
φ = (

α

β

)
, and the claim follows by a straightforward computation. �

Remark 5.5. In [2, theorem 2.5] it is shown that all immersed μ-Darboux transforms of a
Willmore surface are again Willmore. In particular, the μ-Darboux transforms obtained above
are Willmore surfaces in S4.

So far, we considered the μ-Darboux transformation on the universal cover C of the
2-torus T 2 = C/�. By lemma 2.4 we have to find parallel sections with multiplier to obtain
closed Darboux transforms on the torus T2. Since ϕ̂ = G−1φ, and G is defined (4.1) on
T 2 = C/�, it is enough to find solutions φ of (5.2) with multiplier.

Theorem 5.6. Let f : C/� → S3 be the Clifford torus.

(i) A fundamental solution φk is a parallel section of dμ with multiplier, and the μ-Darboux
transform given by φk , μ �= 1, is obtained by rotating and scaling f . For μ = 1, all
μ-Darboux transforms are constant.

(ii) Let μ �= 1 and f̂ : C/� → S4 be a closed μ-Darboux transform of f . Then there exists
a fundamental solution ϕ̂k = Gφk with

f̂ = ϕ̂kH.

In particular, every non-constant μ-Darboux transform f̂ : C/� → S4 of f is the
Clifford torus.

Proof.

(i) If

φk =
(

1√
2
(ξk e−iv + j e−iu)

iεk e−i(u+v) + j i(i − λk)

)
eλku+εkv

is a fundamental solution, then the corresponding μ-Darboux transform is

f̂ = 1√
2
(r1 eiu + r2 eiv),

where

r1 = |εk|2 + |i − λk|2 − iξkεk + i(i − λk)

|εk|2 + |i − λk|2 ,

r2 = |εk|2 + |i − λk|2 − iεk − ξki(i − λk)

|εk|2 + |i − λk|2 .

One easily verifies with εk = ξkλk and i − λk = −ξk(i − εk) that
r1

r2
= −ξk

ξ̄k

∈ S1,

so that r2 = r1 eiθ for a θ ∈ R and f̂ (u, v) = f (u, v + θ)r1.

9
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Proposition 5.3 implies that ϕ̂k = Gφk is constant for μ = 1, and thus an arbitrary
solution, φ = ∑

k φksk, gives a constant Darboux transform f̂ = GφH = const.
(ii) Let f̂ be given by the section φ = G−1ϕ̂ and suppose that φ is not a fundamental solution,

i.e. φ = ∑
k φksk and sk, sl �= 0 for some k �= l. The monodromy condition implies that

φ(u + 2π, v) = φ(u, v)h1 and φ(u, v + 2π) = φ(u, v)h2,

with h1, h2 ∈ C. Since the fundamental solutions

φk =
(

1√
2
(ξk e−iv + j e−iu)

iεk e−i(u+v) + j i(i − λk)

)
eλku+εkv

are linearly independent over C, it follows that

h1 = e2πλk = e2πλl and h2 = e2πεk = e2πεl ,

that is

λk − λl ∈ iZ and εk − εl = λk+1 − λl+1 ∈ iZ . (5.8)

From (5.6) we see that

λ0 − λ1 = x2 − 1

2x
, λ0 − λ3 = i(x2 + 1)

2x
(5.9)

and the remaining differences λk − λl can be computed by using �3
k=0(−1)kλk = 0.

Then it is easy to show that (5.8) is satisfied only if x ∈ {±1,±i} which contradicts
μ = x4 �= 1. �

6. New Willmore tori in S4

As we have seen in theorem 5.6, the only μ-Darboux transforms of the Clifford torus on
C/� are obtained by fundamental solutions ϕ̂k , and in this case the μ-Darboux transform
is the reparametrized and scaled Clifford torus f . To obtain new examples, we consider an
n2-fold covering, f : C/�n → S3, u + iv 	→ 1√

2
(eiu + j eiv), of the Clifford torus with lattice

�n = 2πnZ + 2πniZ, and contemplate the μ-Darboux transforms of f .

Lemma 6.1. Let f : C/�n → S3 be the n2-fold covering of the Clifford torus. Then the
following statements are equivalent:

(i) For μ ∈ C∗ all μ-Darboux transforms are defined on C/�n.
(ii) μ = x4 with x = p+iq

n
∈ S1 and (p, q) ∈ Z

2 \ {0}.
In this case, the multiplier h : �n → C

∗ is trivial, i.e. h ≡ 1.

Proof. Let φ = ∑
k φksk be a parallel section of dμ, μ = x4, with sk �= 0 for all k, where φk

are the fundamental solutions (5.7). Then

φ(u + 2πn, v) = φ(u, v) ⇐⇒ h = e2πnλk for all k = 0, 1, 2, 3.

This implies that n(λk − λl) ∈ iZ for all k, l, and as in the proof of theorem 5.6 it is enough
to consider

n(λ0 − λ1) = n(x2 − 1)

2x
= ip and n(λ0 − λ3) = in(x2 + 1)

2x
= iq

for some p, q ∈ Z. Using (5.9) we see that these equations can be satisfied if and only if
p2 + q2 = n2, that is x = p+iq

n
∈ S1. In this case

λk = i(±p ± q + n)

2n
for all k.

10
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Figure 1. Willmore cylinder obtained by the μ-Darboux transformation.

Figure 2. μ-Darboux transform with (p, q, n) = (3, 4, 5).

Figure 3. μ-Darboux transform with (p, q, n) = (3, 4, 5).

Figure 4. μ-Darboux transform with (p, q, n) = (5, 12, 13).

For an arbitrary Pythagorean triple (p, q, n), it is known that p ±q and n are both odd, so that
±p ± q + n is even and h = e2πnλk = 1. Since εk = λk+1 we also see that the v-periods close.

�
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Since the Darboux transformation essentially preserves the geometric genus of the spectral
curve and the Willmore energy [3] we have shown.

Theorem 6.2. For all Pythagorian triple (p, q, n), there exists a CP
3 family of μ-Darboux

transforms f̂ : C
2/�n → S4 for μ = p+iq

n
. If f̂ is immersed, then f̂ is a Willmore torus with

Willmore energy W(f̂ ) = 2(πn)2. Moreover, in this case f̂ has spectral genus zero.
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